Compressive Sampling of EEG Signals with Finite Rate of Innovation

نویسندگان

  • Kok-Kiong Poh
  • Pina Marziliano
چکیده

Analyses of electroencephalographic signals and subsequent diagnoses can only be done effectively on long term recordings that preserve the signals’ morphologies. Currently, electroencephalographic signals are obtained at Nyquist rate or higher, thus introducing redundancies. Existing compression methods remove these redundancies, thereby achieving compression. We propose an alternative compression scheme based on a sampling theory developed for signals with a finite rate of innovation (FRI) which compresses electroencephalographic signals during acquisition. We model the signals as FRI signals and then sample them at their rate of innovation. The signals are thus effectively represented by a small set of Fourier coefficients corresponding to the signals’ rate of innovation. Using the FRI theory, original signals can be reconstructed using this set of coefficients. Seventy-two hours of electroencephalographic recording are tested and results based on metrices used in compression literature and morphological similarities of electroencephalographic signals are presented. The proposed method achieves results comparable to that of wavelet compression methods, achieving low reconstruction errors while preserving the morphologiies of the signals. More importantly, it introduces a new framework to acquire electroencephalographic signals at their rate of innovation, thus entailing a less costly low-rate sampling device that does not waste precious computational resources.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact Sampling Results for 1-D and 2-D Signals with Finite Rate of Innovation using Strang-Fix Conditions and Local Reconstruction Algorithms (Invited Paper)∗

Recently, it was shown that it is possible to sample classes of signals with finite rate of innovation. These sampling schemes, however, use kernels with infinite support and this leads to complex and instable reconstruction algorithms. In this paper, we show that many signals with finite rate of innovation can be sampled and perfectly reconstructed using kernels of compact support and a local ...

متن کامل

Epileptic Seizure Detection in EEG signals Using TQWT and SVM-GOA Classifier

Background: Epilepsy is a Brain disorder disease that affects people's quality of life. If it is diagnosed at an early stage, it will not be spread. Electroencephalography (EEG) signals are used to diagnose epileptic seizures. However, this screening system cannot diagnose epileptic seizure states precisely. Nevertheless, with the help of computer-aided diagnosis systems (CADS), neurologists ca...

متن کامل

Error-rate dependence of non-bandlimited signals with finite rate of innovation - Information Theory, 2004. ISIT 2004. Proceedings. International Symposium on

Recent results in sampling theory [1] showed that perfect reconstruction of non-bandlimited signals with finite rate of innovation can be achieved performing uniform sampling at or above the rate of innovation. We study analog-to-digital (A/D) conversion of these signals, introducing two types of ovrsampling and consistent

متن کامل

Sampling signals with finite rate of innovation: the noisy case

In [1] a sampling theorem for a certain class of signals with finite rate of innovation (which includes for example stream of Diracs) has been developed. In essence, such non band-limited signals can be sampled at or above the rate of innovation. In the present paper, we consider the case of such signals when noise is present. Clearly, the finite rate of innovation property is lost, but if the ...

متن کامل

A Novel Method for Detection of Epilepsy in Short and Noisy EEG Signals Using Ordinal Pattern Analysis

Introduction: In this paper, a novel complexity measure is proposed to detect dynamical changes in nonlinear systems using ordinal pattern analysis of time series data taken from the system. Epilepsy is considered as a dynamical change in nonlinear and complex brain system. The ability of the proposed measure for characterizing the normal and epileptic EEG signals when the signal is short or is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2010  شماره 

صفحات  -

تاریخ انتشار 2010